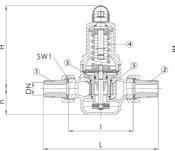
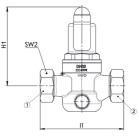


Bronze / Gunmetal Pressure Reducing Valve

Features

- Standard threaded connections:
 - Male thread BSPT (ISO 7/1)
 - Female thread BSPP (ISO 228/1). Available DN15, DN20 & DN25.
- Suitable for neutral and non-neutral liquids, air, gases, vapours and warm water
- DIN EN 1567, ISO 3822, PED 2014/68/EU
- Marine approvals GL, LR, EMEA, BV, ABS, RS
- ATEX approval available at extra cost
- 24 month warranty
- Test certificate to EN10204-3.1 available on request




Technical data

Inlet pressure: Up to 40 Bar Outlet pressure: 0.5 to 15 Bar Working temp: EPDM or FKM Seal

-10°C to +95°C

See overleaf for additional information.

Connection	DN	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
Inlet pressure SP, HP up to	bar	40	40	40	40	40	40
Inlet pressure LP to	bar	25	25	25	25	25	25
Outlet pressure	bar	0.5 - 2	0.5 - 2	0.5 - 2	0.5 - 2	0.5 - 2	0.5 - 2
		1 - 8	1 - 8	1 - 8	1 - 8	1 - 8	1 - 8
		5 - 15	5 - 15	5 - 15	5 - 15	5 - 15	5 - 15
Installation dimensions	L	142	158	180	193	226	252
in mm	I	80	90	100	105	130	140
	l1	85	95	105			
	H (H1)	102 (128¹)	102 (128¹)	130 (150¹)	130 (150¹)	165 (185¹)	165 (185¹)
	h	33	33	45	45	70	70
	SW1	30	37	46	52	65	75
	SW2	28	35	43	48	57	68
Weight	kg	1.2 (1.5 ¹⁾	1.3 (1.6 ¹)	2.4 (2.91)	2.6 (3.1 ¹)	5.5 (6.2 ¹)	6.0 (6.7 ¹)
Coefficient of flow kvs	m³/h	3	3.5	6.7	7.6	12.5	15
1 for type 681mGFO-LP							

N.	Part Name	Materials
1	Inlet body	Bronze / Gunmetal CC499K
2	Outlet body	Bronze / Gunmetal CC499K
3	Internal parts	Bronze / Gunmetal CC499K
		Stainless Steel 1.4404 (316)
4	Spring	Spring steel with anti-rust protection 1.1200 (EN10270-1)
5	Strainer	Stainless Steel 316

Typical Applications

- Potable water supply
- Process water supply in industrial and building technology
- Fire-fighting equipment & sprinkler systems
- · Shipbuilding industry and offshore plants
- Secondary areas in the food, pharmaceutical and cosmetics industries

V1. Dimensions in mm This data sheet is designed as a guide and should not be regarded as wholly accurate in every detail. We reserve the right to amend the specification of any product without notice.

Valve version

High-quality, heat-resistant moulded elastomere, fabric-reinforced

diaphragm.

m with diaphragm Pressure adjustment by means of non-rising spindle.

Valve insert with balanced single seat valve completely made of stainless

steel.

Complete valve insert SP/HP (order code: 681 Insert-DN..-seal) available as replacement part can be exchanged without removing the valve.

Complete valve insert LP (order code: 681 LP Insert-DN..-seal) available as replacement part can be exchanged without removing the valve.

Built-in dirt trap made of stainless steel.

Mesh DN 15 to DN 32 0,60 mm size: DN 40 and DN 50 0,75 mm

Medium

	gaseous	for water and distilled water, neutral and non-sticking liquids, compressed air and
GF	and	neutral gases; optionally with FPM elastomere seals for non-neutral media i.e.
	liquid	oils, fuels, oil-laden compressed air etc.

Type of lifting mechanism

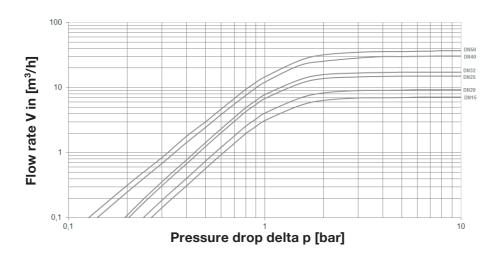
O without lifting device

Outlet pressure ranges

SP	Standard version	Inlet pressure: up to 40 bar	Outlet pressure: from 1 to 8 bar
HP	High-pressure version	Inlet pressure: up to 40 bar	Outlet pressure: from 5 to 15 bar
LP	Low-pressure version	Inlet pressure: up to 25 bar	Outlet pressure: from 0,5 to 2 bar

Fixed setting at a required outlet pressure against surcharge.

Seat-Seal/Diaphragm Options


Option	Materials	Туре	Working Temp.
EPDM	Ethylene propylene diene	Elastomere moulded diaphragm and seals approvals according to drinking water directive	–10°C to +95°C
Against su	rcharge		
FKM	Fluorocarbon	Elastomere moulded diaphragm and seals	–10°C to +95°C

V1. Dimensions in mm

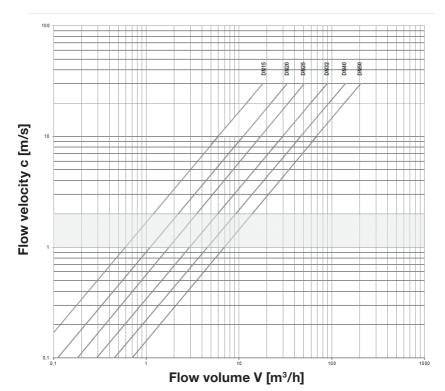
Capacity Charts

Dimensioning by pressure loss on the outlet pressure side Flow chart water

Dimensioning by flow velocity

For Liquids:

With help of the chart you can determine the nominal diameter (DN) for a given flow volume V (m³/h). The ideal flow velocity is between 1m/s – 2m/s.


For compressed air and other gaseous media:

The usual flow velocity for compressed air is 10 - 20 m/s. For gaseous media the flow volume V should always be shown in actual cubic meters/hour.

If the flow volume is given in standard cubic meters, these should be converted into actual cubic meters before using the diagram.

$$V(m^3/h) = \frac{V_{Norm} (Nm^3/h)}{p_{absolut} (bar)} = \frac{V_{Norm}}{p_{\ddot{0}}+1}$$

Actual cubic meters are based on the prevailing pressure of the medium on the outlet side of the pressure reducer.

